P P SAVANI UNIVERSITY

Fourth Semester of B. Tech. Examination May 2022

SECH2070 Chemical Engineering Thermodynamics - I

25.05.2022, Wednesday

(5) potential energy

Instructions:

Time: 09:00 a.m. To 11:30 a.m.

Maximum Marks: 60

 The q Section 	uestion paper comprises of two sections. on I and II must be attempted in separate answer sheets.	
3. Make	suitable assumptions and draw neat figures wherever required	
4. Use of	f scientific calculator is allowed.	
	SECTION - I	
Q-1	Define:	[05]
	(1) state functions	. ,
	(2) Kinetic energy	
	(3) Pressure	
	(4) Adiabatic process	
Q-2(a)	(5) Cyclic process.	
Q-2 (a)	Derive the equation for work done for the isothermal process.	[05]
	Derive the equation for the first law of thermodynamics for flow processes. OR	[05]
Q - 2 (a)	A system consisting of a gas confined in a cylinder is undergoing the following series of processes before it is brought back to the initial conditions:	[05]
	Step 1 : A constant pressure process when it receives 50 J of work and gives up 25 J of heat. Step 2 : A constant volume process when it receives 75 J of heat.	
	Step 3 : An adiabatic process.	
	Determine the change in internal energy during each step and the work done during the adiabatic process.	
Q-2(b)	Discuss: heat engine and heat pump with diagram	[05]
Q-3(a)	Discuss the characteristics of the reversible process with an example.	[05]
Q-3 (b)	Using Hess's law evaluate the heat of formation of solid CaCO ₃ . The following data are available.	[05]
	(a) $Ca_{(s)} + (1/2)O_{2(g)} \rightarrow CaO_{(s)};$ $\Delta H^{0}_{298} = -635.77 \text{ kJ}$	
	(b) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$; $\Delta H^{0}_{298} = -393.77 \text{ kJ}$	
	(c) $CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}$; $\Delta H^{0}_{298} = -178.15 \text{ kJ}$	
	OR .	
Q-3(a)	An ideal gas is undergoing a series of three operations: The gas is heated at constant	[05]
	volume from 300 K and 1 bar to a pressure of 2 bar. It is expanded in a reversible	
	adiabatic process to a pressure of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the heat and work effects for each step. Assume $C_P = 29.3 \text{ kJ/kmol K}$	
Q-3(b)	Calculate molar volume for methanol vapor at 500 K and 10 bar by using the virial equation of state. Take Virial coefficients $B = -2.19 \times 10^{-4} \text{ m}^3/\text{mol}$; $C = -1.73 \times 10^{-8} \text{ m}^6/\text{mol}^2$.	[05]
Q-4	Attempt any One.	[05]
(i)	Distinguish between intensive and extensive properties. State whether the following	[03]
	properties are intensive or extensive.	
	(1) Volume	
	(2) specific volume	
	(3) heat capacity	
	(4) pressure	

	(6) Entropy.	
(ii)	Write a short note on Gibbs phase rule.	
()	SECTION - II	
Q-1	Multiple Choice Questions / Short Questions	[05]
(i)	Which of the following refers to the term C.O.P. of refrigeration?	[03]
.,	a) Cooling for Performance	
	b) Coefficient of Performance	
	c) Capacity of Performance	
	d) Co-efficient of Plant	
(ii)	Discuss Carnot Principle in short.	
(iii)	For a system which undergoes an infinitesimal reversible process between two equilibrium	
	states, the change in internal energy is	
	a) dU = pdV - TdS	
	b) $dU = TdS + pdV$	
	c) $dU = TdS - pdV$	
	d) $dU = -TdS - pdV$	
(iv)	If temperature is constant, internal energy does not change.	
	a) true	
	b) false	
(v)	The limitation of the first law is	
	a) does not indicate the possibility of a spontaneous process proceeding in a definite	
	direction	
Sale, or	b) it assigns a quality to different forms of energy	
	c) indicates the direction of any spontaneous process	
	d) none of the mentioned	
2 - 2 (a)	Discuss throttling process (joule-thomson expansion) and flow through compressor.	[05]
2 - 2 (b)	Oil at 500 K is to be cooled at a rate of 5000 kg/h in a counter-current exchanger using cold	[05]
	water available at 295 K. A temperature approach of 10 K is to be main-tained at both ends	
	of the exchanger. The specific heats of oil and water are respectively 3.2 and 4.2 kJ/kg K.	
	Determine the total entropy change in the process.	
	OR	
2 - 2 (a)	Explain the Vapour-compression Cycle with diagram.	[05]
(a) (b)	Calculate the change in internal energy, change in enthalpy, work done, and the heat	[05]
	supplied in the following processes:	
	(a) An ideal gas is expanded from 5 bar to 4 bar isothermally at 600 K.	
	(b) An ideal gas contained in a vessel of 0.1 m3 capacity is initially at 1 bar and 298 K. It	
	is heated at constant volume to 400 K.	
2 (a)	(Assume that $C_P = 30 \text{ J/mol K.}$)	
(2 - 3 (a) (2 - 3 (b)	Define refrigeration. Explain Coefficient of Performance (COP).	[05]
(a) (b)	It is required to freeze 1 kg water at 273 K by means of a refrigeration machine which	[05]
	operates in the surroundings at 300 K. The latent heat of fusion of ice at 273 K is 334.11	
	kJ/kg. Determine: (a) The minimum amount of work required and (b) The heat given up to the surroundings.	
2 - 3 (a)	OR Discuss the continuity equation and energy equation with diagram.	5053
2 - 3 (b)	Calculate the compressibility factor and molar volume for methanol vapour at 500 K and 10	[05]
- (0)	bar by using the following equations. Experimental values of virial coefficients are,	[05]
	B = $-2.19 \times 10^{-4} \mathrm{m}^3/\mathrm{mol}$; C = $-1.73 \times 10^{-8} \mathrm{m}^6/\mathrm{mol}^2$. The critical temperature and pressure of	
	methanol are 512.6 K and 81 bar.	
	(a) Truncated form of vivial counties	

$$Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$

Take V Values between = $3.91 \times 10^{-3} \text{ m}^3$ to $3.95 \times 10^{-3} \text{ m}^3$ as trial value.

(b) Redlich-Kwong equation

$$V = \frac{RT}{P} + b - \frac{a(V - b)}{T^{0.5} PV(V + b)}$$

$$a = \frac{0.4278 \ R^2 T_C^{2.5}}{P_C}; \quad b = \frac{0.0867 \ RT_C}{P_C}$$

Take V Value between V = $3.960 \times 10^{-3} \text{ m}^3$ to $3.964 \times 10^{-3} \text{ m}^3$

Q-4 Discuss how Choice of Refrigerant is selected and types of refrigerant.

[05]